46 lines
1.6 KiB
Markdown
46 lines
1.6 KiB
Markdown
# fuzzysearch
|
|
|
|
> Tiny and blazing-fast fuzzy search in JavaScript
|
|
|
|
Fuzzy searching allows for flexibly matching a string with partial input, useful for filtering data very quickly based on lightweight user input.
|
|
|
|
# Demo
|
|
|
|
To see `fuzzysearch` in action, head over to [bevacqua.github.io/horsey][3], which is a demo of an autocomplete component that uses `fuzzysearch` to filter out results based on user input.
|
|
|
|
# Install
|
|
|
|
From `npm`
|
|
|
|
```shell
|
|
npm install --save fuzzysearch
|
|
```
|
|
|
|
# `fuzzysearch(needle, haystack)`
|
|
|
|
Returns `true` if `needle` matches `haystack` using a fuzzy-searching algorithm. Note that this program doesn't implement _[levenshtein distance][2]_, but rather a simplified version where **there's no approximation**. The method will return `true` only if each character in the `needle` can be found in the `haystack` and occurs after the preceding character.
|
|
|
|
```js
|
|
fuzzysearch('twl', 'cartwheel') // <- true
|
|
fuzzysearch('cart', 'cartwheel') // <- true
|
|
fuzzysearch('cw', 'cartwheel') // <- true
|
|
fuzzysearch('ee', 'cartwheel') // <- true
|
|
fuzzysearch('art', 'cartwheel') // <- true
|
|
fuzzysearch('eeel', 'cartwheel') // <- false
|
|
fuzzysearch('dog', 'cartwheel') // <- false
|
|
```
|
|
|
|
An exciting application for this kind of algorithm is to filter options from an autocomplete menu, check out [horsey][3] for an example on how that might look like.
|
|
|
|
# But! _`RegExp`s...!_
|
|
|
|
![chart showing abysmal performance for regexp-based implementation][1]
|
|
|
|
# License
|
|
|
|
MIT
|
|
|
|
[1]: https://cloud.githubusercontent.com/assets/934293/6495796/106a61a6-c2ac-11e4-945d-3d1bb066a76e.png
|
|
[2]: http://en.wikipedia.org/wiki/Levenshtein_distance
|
|
[3]: http://bevacqua.github.io/horsey
|